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The analysis of the channel-flow DNS data performed by Mansour, Kim,

and Moin (1988) suggests strongly that, for such near-wall flows, it is prefer-
(

&
Rij. It is found that the pressure-transport of kinetic energy %Hii is quite
small (see Figs. 7.18 and 7.34 on pages 294 and 322), so that in fact II;;
is itself almost redistributive. The profiles of II;; (Figs. 7.35 7.38 on pages

324-325) exhibit simple behavior with II;; being zero at the wall (because

able to use the decomposition in terms of R;.’ rather than that in terms of

u is zero there). In contrast, R and GTQ%J% /0y exhibit much more com-
plicated behavior, including several sign changes. Although both terms are
zero at the wall, within the viscous sublayer they are large, but almost can-
cel. In view of these considerations, we henceforth use the decomposition
Eq. (11.5) in terms of RE;Z) and T(®).

For inhomogeneous flows, the redistribution ’Rl(;l) is modelled in terms of
local quantities. That is, RE;) (x,1) is modelled in terms of (u;u;), O(U;)/0x;
and e, evaluated at (x,t), just as in homogeneous turbulence (Eq. 11.135).
In terms of the ease of solution of the resulting model equations, this is
certainly an expedient assumption compared to the alternative of including
non-local quantities. But it should be recognized that p’(x, t) is governed by
a Poisson equation (Eq. 11.9), so that it is influenced by quantities such as
0(U;)/0x; some distance from x. As a consequence, the modelling of RE;)
in inhomogeneous flows is less secure than it is for homogeneous turbulence.

(In contrast, in elliptic relaxation models—Section 11.8—the modelling

of Rg?) is non-local.)

11.6.2 Reynolds-Stress Transport

With the velocity-pressure-gradient tensor II;; decomposed according to
Eq. (11.5), the exact evolution equation for the Reynolds stresses is

0 v '
= (usu;) + Oz, [Tk(z‘j) + Tlgfj) + TI&?] =Py + R e, (11.138)

where the three fluxes are: viscous diffusion

w) _ _ O{uiuy)
Tyij = V—axk ; (11.139)
pressure transport
T = 28;uip’) /p. (11.140)

and turbulent convection
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() = (wiujur). (11.141)
Viscous diffusion is negligible except in the viscous wall region; and, since
the term is in closed form, it requires no further discussion.

Pressure Transport. Before the advent of DNS, there was little reliable
information about pressure correlations. Based on an analysis of nearly-
homogeneous turbulence, Lumley (1978) proposed the model

1
;<uz'p') = — i (uiuju;). (11.142)

Since the pressure-transport given by Eq. (11.140) is isotropic, it can be
examined through the corresponding term in the kinetic energy equation

LT = () /p, (11.143)
for which Lumley’s model is
Ly = = Nuguiug). (11.144)

This is —% of the convective flux

170 — Luguug). (11.145)
The kinetic energy budgets for channel flow (Fig. 7.18 on page 294) and for
the boundary layer (Fig. 7.34 on page 322) show that pressure transport is
not very significant close to the wall, and that Lumley’s model is qualita-
tively incorrect. At the edge of the boundary layer, however, the pressure
transport is more important, and Lumley’s model is at least qualitatively
correct.

To examine the pressure transport for free shear flows, the kinetic energy
budget for the self-similar temporal mixing layer is shown in Fig. 11.16. It
may be seen from Fig. 11.16(a) that the pressure transport is relatively small
over most of the layer, and that Lumley’s model is quite reasonable.

The edge of the layer is examined in more detail in Fig. 11.16(b). The
rotational turbulent fluctuations within the layer induce irrotational fluctu-
ations in the non-turbulent region (y/d > 1, say). This transfer of energy is
effected by the fluctuating pressure field, and hence it appears in the kinetic
energy budget as pressure transport. As may be seen from the figure, at the
edge of the layer this pressure transport becomes dominant.
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Figure 11.16: Kinetic energy budget in the temporal mixing layer from the DNS
data of Rogers and Moser (1994): (a) across the whole flow (b) an expanded view
of the edge of the layer. The contributions to the budget are: production P;
dissipation —e¢; rate of change —dk/dt; turbulent transport; pressure transport
(dashed line). All quantities are normalized by the velocity difference and the layer
thickness 0 (see Fig. 5.21 on page 145).

Demuren et al. (1996) use DNS data to examine separately the pressure
transport due to the slow and rapid pressure; and models for each contribu-
tion are proposed.

In most Reynolds-stress models the pressure transport is either neglected
or (implicitly or explicitly) it is modelled together with the turbulent con-
vection by a gradient-diffusion assumption.

Gradient-Diffusion Models. The simplest gradient-diffusion model for
T}, = The) + T, due to Shir (1973), is
E a(uiu]'>

Tléij - _CS £ Bxk

, (11.146)
where Cj is a model constant. In more general use is the model of Daly and
Harlow (1970) which uses the Reynolds-stress tensor to define an anisotropic
diffusion coefficient:

O(uiuy)

k
Tiij = = Cs—(ugue) 92,

(11.147)
For this model Launder (1990) suggests the value of the constant Cs = 0.22.

It T,S‘) = (ugu;uj) is to be modelled separately, then a consistent model
is required to be symmetric with respect to all three indices. Such symmetric
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models, necessarily involving cross-diffusion, have been proposed by Mellor
and Herring (1973)

(uiujuk) = — (11.148)

CS?( ox; + oz + Oz ’

and by Hanjalié¢ and Launder (1972)

(
<u1~ujuk> = *ng X

<(uiUg>a<g+;:k> + (uju@a(g#;:’“) + <ukw>a<g—;j]>> . (11.149)
However, consistent models for Tléij are required to be symmetric with re-
spect to ¢ and j only—a requirement that is satisfied by all four of the above
models.

An examination of the transport equation for the triple correlation (u;u;uy)
can motivate yet more elaborate models, involving the mean velocity gradi-
ents. But the general experience of practitioners is that the modelling of T,;ij
is not a critical ingredient in the overall model, and that the relatively sim-
ple Daly-Harlow model is adequate (Launder 1990). This view is questioned
by Parneix, Laurence, and Durbin (1998) who suggest that deficiencies in
the transport model are responsible for inaccuracies in the calculation of
the flow over a backward facing step. Direct tests of the models for Tlgf)
against experimental data can be found in Schwarz and Bradshaw (1994)
and references therein.

11.6.3 Dissipation Equation

The standard model equation for ¢ used in Reynolds-stress models is that
proposed by Hanjali¢ and Launder (1972)

De 0

De 0 Oe 2
Dt ox; i

<C€];(uiuj-)ax]> + 061% - 062%, (11.150)
with C; = 0.15, C;; = 1.44 and C.9 = 1.92 (Launder 1990). There are two
differences between this equation and that used in the k-¢ model (Eq. 10.53).
First, the production P is evaluated directly from the Reynolds stresses
rather than as 21/T.57'ij.§ij. Second, the diffusion term involves an anisotropic
diffusivity.

As mentioned in Section 10.4.3, several modifications to the dissipation
equation have been proposed. In a Reynolds-stress model, the invariants of



